منابع مشابه
Molecule-hugging graphene nanopores.
It has recently been recognized that solid-state nanopores in single-atomic-layer graphene membranes can be used to electronically detect and characterize single long charged polymer molecules. We have now fabricated nanopores in single-layer graphene that are closely matched to the diameter of a double-stranded DNA molecule. Ionic current signals during electrophoretically driven translocation...
متن کاملDNA translocation through graphene nanopores.
We report on DNA translocations through nanopores created in graphene membranes. Devices consist of 1-5 nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, we observe larger blocked currents than for traditional solid-state nanopores. However, ionic current noise levels are several orders of magnitude l...
متن کاملIon selectivity of graphene nanopores.
As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed ...
متن کاملDNA translocation through graphene nanopores.
Nanopores--nanosized holes that can transport ions and molecules--are very promising devices for genomic screening, in particular DNA sequencing. Solid-state nanopores currently suffer from the drawback, however, that the channel constituting the pore is long, approximately 100 times the distance between two bases in a DNA molecule (0.5 nm for single-stranded DNA). This paper provides proof of ...
متن کاملSelectively Sized Graphene-Based Nanopores for in Situ Single Molecule Sensing
The use of nanopore biosensors is set to be extremely important in developing precise single molecule detectors and providing highly sensitive advanced analysis of biological molecules. The precise tailoring of nanopore size is a significant step toward achieving this, as it would allow for a nanopore to be tuned to a corresponding analyte. The work presented here details a methodology for sele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2013
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1220012110